discontinued

BP7218 c-src pTyr529 antibody

See related secondary antibodies

Search for all "c-src pTyr529"

0.1 ml / €420.00

Quick Overview

Rabbit anti Chicken, Frog, Human, Mouse, Rat c-src pTyr529

Product Description for c-src pTyr529

Rabbit anti Chicken, Frog, Human, Mouse, Rat c-src pTyr529.
Presentation: Aff - Purified
Product is tested for Western blot / Immunoblot.

Properties for c-src pTyr529

Product Category Primary Antibodies
Quantity 0.1 ml
Synonyms AB4817
Presentation Aff - Purified
Reactivity Chk, Frog, Hu, Ms, Rt
Applications WB
Clonality Polyclonal
Host Rabbit
Shipping to Worldwide
PDF datasheet View Datasheet
Manufacturer Acris Antibodies GmbH
Material safety datasheet MSDS for Polyclonal Antibodies (de)

Datasheet Extract

Immunogen
Immunogen:
Chemically synthesized phosphopeptide derived from the region of human Src that contains tyrosine 529 (tyrosine 530 including the initiating methionine)
Remarks:
The sequence is conserved in mouse, rat, chicken and frog.
Application Western blot (1:1000 starting dilution).
Previous lots of this antibody have been used in immunohistochemistry.
Positive Control Used: Chick Embryo Fibroblast (CEF) cells expressing human wild-type Src protein; MDCK cells.
Background Src is a 60 kDa non-receptor tyrosine kinase involved in signal transduction in many biological systems and implicated in the development of human tumors. Tyrosine 529 is located near the carboxyl terminus of Src and acts as a negative regulator, in that Src is held in the inactive form through an intramolecular interaction between the SH2 domain and the carboxyl terminus when tyrosine 529 is phosphorylated by Csk. This conformation blocks phosphorylation of the catalytic domain residue (tyrosine 418 in the human sequence), thereby preventing Src activation. When tyrosine 529 is dephosphorylated, tyrosine 418 can be maximally phosphorylated leading to full activation.
Protocols Western Blotting Procedure

1. Lyse approximately 10e7 cells in 0.5 mL of ice cold Cell Lysis Buffer (formulation provided below). This buffer, a modified RIPA buffer, is suitable for recovery of most proteins, including membrane receptors, cytoskeletal-associated proteins, and soluble proteins. Other cell lysis buffer formulations, such as Laemmli sample buffer and Triton-X 100 buffer, are also compatible with this procedure. Additional optimization of the cell stimulation protocol and cell lysis procedure may be required for each specific application.
2. Remove the cellular debris by centrifuging the lysates at 14,000 x g for 10 minutes. Alternatively, lysates may be ultracentrifugedat 100,000 x g for 30 minutes for greater clarification.
3. Carefully decant the clarified cell lysates into clean tubes and determine the protein concentration using a suitable method, such as the Bradford assay. Polypropylene tubes are recommended for storing cell lysates.
4. React an aliquot of the lysate with an equal volume of 2x Laemmli Sample Buffer (125 mM Tris, pH 6.8, 10% glycerol, 10% SDS, 0.006% bromophenol blue, and 130 mM dithiothreitol [DTT]) and boil the mixture for 90 seconds at 100°C.
5. Load 10-30 µg of the cell lysate into the wells of an appropriate single percentage or gradient minigel and resolve the proteins by SDS-PAGE.
6. In preparation for the Western transfer, cut a piece of PVDF membrane slightly larger than the gel. Soak the membrane in methanol for 1 minute, then rinse with ddH2O for 5 minutes. Alternatively, nitrocellulose may be used.
7. Soak the membrane, 2 pieces of Whatman paper, and Western apparatus sponges in transfer buffer (formulation provided below) for 2 minutes.
8. Assemble the gel and membrane into the sandwich apparatus.
9. Transfer the proteins at 140 mA for 60-90 minutes at room temperature.
10. Following the transfer, rinse the membrane with Tris buffered saline for 2 minutes.
11. Block the membrane with blocking buffer (formulation provided below) for one hour at room temperature or overnight at 4°C.
12. Incubate the blocked blot with primary antibody at a 1:1000 starting dilution in Tris buffered saline supplemented with 3% Ig-free BSA and 0.1% Tween 20 overnight at 4oC or for two hours at room temperature.
13. Wash the blot with several changes of Tris buffered saline supplemented with 0.1% Tween 20.
14. Detect the antibody band using an appropriate secondary antibody, such as goat F(ab)2 anti-rabbit IgG alkaline phosphatase conjugate or goat F(ab)2 anti-rabbit IgG horseradish peroxidase conjugate in conjunction with your chemiluminescence reagents and instrumentation.

Cell Lysis Buffer Formulation:
10 mM Tris, pH 7.4
100 mM NaCl
1 mM EDTA
1 mM EGTA
1 mM NaF
20 mM Na4P2O7
2 mM Na3VO4
0.1% SDS
0.5% sodium deoxycholate
1% Triton-X 100
10% glycerol
1 mM PMSF (made from a 0.3 M stock in DMSO)
or 1 mM AEBSF (water soluble version of PMSF)
60 µg/mL aprotinin
10 µg/mL leupeptin
1 µg/mL pepstatin
(alternatively, protease inhibitor cocktail such as Sigma Cat. # P2714 may be used)



Transfer Buffer Formulation:
2.4 gm Tris base
14.2 gm glycine
200 mL methanol
Q.S. to 1 liter, then add 1 mL 10% SDS.
Cool to 4°C prior to use.

Tris Buffered Saline Formulation:
20 mM Tris-HCl, pH 7.4
0.9% NaCl

Blocking Buffer Formulation:
100 mL Tris buffered saline
5 gm BSA
0.1 mL Tween 20


Peptide Competition Experiment
The specificity of a Phosphorylation Site Specific Antibody (PSSA) in each experimental system can be confirmed through peptide competition. In this technique, aliquots of antibody are pre-incubated with peptide containing the sequence of the phosphopeptide immunogen used to raise the PSSA and the corresponding non-phosphopeptide. Following preincubation with the peptide, each antibody preparation is then used as a probe in antibody-based detection methods, such as Western blotting, immunocytochemistry, flow cytometry, or ELISA. With a PSSA specific for the phosphorylated target protein, pre-incubation with an excess of peptide containing the sequence of the phosphopeptide immunogen will block all antigen binding sites, while pre-incubation with the corresponding non-phosphopeptide will not affect the antibody.
In performing the Peptide Competition Experiment, it is important to note that the optimal dilutions of both antibody and peptide should be determined empirically for each specific application. The optimal dilution of antibody in these procedures is below saturating, as determined by previous experiments in your system.
The optimal dilution of peptide used in these procedures will depend on the overall affinity or avidity of the antibody, as well as the quantity of the target antigen. A 50-150 fold molar excess of peptide to antibody is found to be effective for most peptide competition experiments.
In the example presented below, the PSSA is used as a dilution of 1:1000 and the peptides are used at a concentration of 333 nM. The total volume of the phosphopeptide and nonphosphopeptide pre-incubated antibody preparations is 2 mL, sufficient for probing Western blot strips, as well as for use in other antibody-based detection methods. Under these conditions, the molar excess of peptide to antibody is > / = 50.

Procedure:
1. Prepare three identical test samples, such as identical PVDF or nitrocellulose strips to which the protein of interest has been transferred. The test samples should be blocked using a blocking buffer, such as Tris buffered saline supplemented with 0.1% Tween 20, and either 5% BSA or 5% non-fat dried milk.
2. Prepare 6.5 mL of working antibody stock solution (1:1000 in this example) by adding 6.5 μL of antibody stock solution to 6.5 mL of buffer containing blocking protein, such as TBS supplemented with 0.1% Tween 20, and either 3% BSA or 3% non-fat dried milk.
3. Apportion the unused PSSA into working aliquots and store at -20°C for future use (the stock PSSA contains 50% glycerol and will not freeze at this temperature).
4. Allow the lyophilized control peptides to reach room temperature, ideally under desiccation. 5. Reconstitute each of the control peptides to a concentration of 66.7 µM with nanopure water. (i.e. for a peptide with a molecular mass of 1500, reconstitution with 1 mL water yields a solution with a concentration of 66.7 µM).
6. Apportion the unused reconstituted peptide solutions into working aliquots and store at
-20°C for future use.
7. Label 3 test tubes as follows:
- tube 1: water only no peptide control
- tube 2: phosphopeptide
- tube 3: non-phosphopeptide
8. Into each tube, pipette the following components
- tube 1: 2 mL diluted PSSA solution plus 10 µL nanopure water
- tube 2: 2 mL diluted PSSA solution plus 10 µL phosphopeptide
- tube 3: 2 mL diluted PSSA solution plus 10 µL non-phosphopeptide
9. Incubate the three tubes for 30 minutes at room temperature with gentle rocking. During this incubation, the peptides have the chance to bind to the combining site of the antibody.
10. At the end of the incubation step, transfer the contents of each of the three tubes to clean reaction vessels containing one of the three identical test samples.
For Western blotting strips:
Incubate the strips with the pre-incubated antibody preparations for 1 hour at room temperature or overnight at 4°C.
Wash each strip four times, five minutes each, to remove unbound antibody. Transfer each strip to a new solution containing a labeled secondary antibody [e.g., goat F(ab)2 anti-rabbit IgG alkaline phosphatase conjugate or goat F(ab)2 anti-rabbit IgG horseradish peroxidase conjugate.
Remove unbound secondary antibody by thorough washing, and develop the signal using your chemiluminescent reagents and instrumentation.
The signal obtained with antibody incubated with the "Water Only, No Peptide Control" (Tube 1), represents the maximum signal in the assay. This signal should be eliminated by preincubation with the "Phosphopeptide" (Tube 2), while pre-incubation with the "Non-Phosphopeptide" (Tube 3) should not impact the signal. If the "Phosphopeptide" only partially eliminates the signal, repeat the procedure using twice the volume of water or peptide solutions listed in Step 8. If partial competition is seen following pre-incubation with the "Non-Phosphopeptide", repeat the procedure using half the volumes of water or peptide solutions listed in Step 8.
General Readings Bock, H.H. and J. Herz (2003) Reelin activates SRC family tyrosine kinases in neurons. Curr. Biol. 13(1):18-26.
Gil-Henn, H. and A. Elson (2003) Tyrosine phosphatase-epsilon activates Src and supports the transformed phenotype of Neu-induced mammary tumor cells. J. Biol. Chem. 278(18):15579-15586.
Pankov, R., et al. (2003) Specific beta1 integrin site selectively regulates Akt/protein kinase B signaling via local activation of protein phosphatase 2A. J. Biol. Chem. 278(20):18671-18681.
Haas, M., et al. (2002) Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the EGFR relays the signal from ouabain to mitogen-activated protein kinases. J. Biol. Chem. 277(21):18694-18702.
Lacalle, R.A., et al. (2002) Specific SHP-2 partitioning in raft domains triggers integrin-mediated signaling via Rho activation. J. Cell Biol. 157(2):277-289.
Obergfell, A., et al. (2002) Coordinate interactions of Csk, Src, and Syk kinases with αIIbβ3 initiate integrin signaling to the cytoskeleton. J. Cell Biol. 157(2):265-275.
Cheng, A., et al. (2001) Attenuation of adhesion-dependent signaling and cell spreading in transformed fibroblasts lacking protein tyrosine phosphatase-1B. J. Biol. Chem. 276(28):25848-25855.
Manzerra, P., et al. (2001) Zinc induces a Src family kinase-mediated up-regulation of NMDA receptor activity and excitotoxicity. Proc. Nat'l. Acad. Sci. USA 98(20):11055-11061.
Sussman, M.A., et al. (2000) Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J. Clin. Invest. 105(7):875-886.
Ma, Y.C., et al. (2000) Src tyrosine kinase is a novel direct effector of G proteins. Cell 102(5):635-646.
Storage Store at 2 - 8 °C up to one week or (in aliquots) at -20 °C for longer. Avoid repeated freezing and thawing.
Centrifuge vial before opening.
Shelf life: one year from despatch.
Format
Purification:
Sequential epitope-specific chromatography. The antibody has been negatively pre-adsorbed using a non-phosphopeptide corresponding to the site of phosphorylation to remove antibody that is reactive with non-phosphorylated Src. The final product is generated by affinity chromatography using a Src-derived peptide that is phosphorylated at tyrosine 529.
Buffer System:
Dulbecco's phosphate buffered saline (without Mg2+ and Ca2+), pH 7.3
(+/- 0.1), 50% glycerol with 1.0 mg/mL BSA (IgG, protease free) as a carrier, containing
0.05 % sodium azide
State:
Liquid Ig fraction
Aff - Purified
Specificity
Specificity:
This antibody detects Src.
Species:
Human, Mouse, Rat, Chicken, Frog.

Accessory Products

  • LinkedIn